Package: easypower 1.0.2

easypower: Sample Size Estimation for Experimental Designs

Power analysis is used in the estimation of sample sizes for experimental designs. Most programs and R packages will only output the highest recommended sample size to the user. Often the user input can be complicated and computing multiple power analyses for different treatment comparisons can be time consuming. This package simplifies the user input and allows the user to view all of the sample size recommendations or just the ones they want to see. The calculations used to calculate the recommended sample sizes are from the 'pwr' package.

Authors:Aaron McGarvey

easypower_1.0.2.tar.gz
easypower_1.0.2.zip(r-4.5)easypower_1.0.2.zip(r-4.4)easypower_1.0.2.zip(r-4.3)
easypower_1.0.2.tgz(r-4.4-any)easypower_1.0.2.tgz(r-4.3-any)
easypower_1.0.2.tar.gz(r-4.5-noble)easypower_1.0.2.tar.gz(r-4.4-noble)
easypower_1.0.2.tgz(r-4.4-emscripten)easypower_1.0.2.tgz(r-4.3-emscripten)
easypower.pdf |easypower.html
easypower/json (API)

# Install 'easypower' in R:
install.packages('easypower', repos = c('https://amcgarvey93.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.48 score 1 stars 1 packages 4 scripts 258 downloads 2 exports 1 dependencies

Last updated 9 months agofrom:833b2e26e4. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-winOKNov 06 2024
R-4.5-linuxOKNov 06 2024
R-4.4-winOKNov 06 2024
R-4.4-macOKNov 06 2024
R-4.3-winOKNov 06 2024
R-4.3-macOKNov 06 2024

Exports:n.multiwayn.oneway

Dependencies:pwr

Factorial ANOVA Examples

Rendered fromUser_Input.Rmdusingknitr::rmarkdownon Nov 06 2024.

Last update: 2015-11-06
Started: 2015-11-06